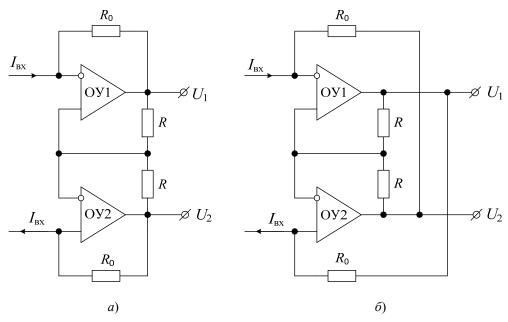
УДК 621.317


АНАЛИЗ ПРЕОБРАЗОВАТЕЛЯ ТОК-НАПРЯЖЕНИЕ С НУЛЕВЫМ ВХОДНЫМ НАПРЯЖЕНИЕМ

В. А. КАРПОВ, О. М. РОСТОКИНА, А. В. КАРПОВ

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Введение

Для измерения тока широко распространенной практикой является использование шунтов [1]—[3]. Однако недостатком такого способа измерения является конечное сопротивление шунта, вносящее в схему искажения, особенно при измерении малых токов. Альтернативой данному способу измерения тока является преобразователь токнапряжение с использованием операционного усилителя (ОУ) с параллельной отрицательной обратной связью [3]—[5]. При этом падение напряжения на входе преобразователя определяется только напряжением смещения 10–1000 мкВ. Однако такой способ возможен только для измерения тока в заземленных ветвях измеряемой схемы. То есть при измерении уровень синфазной составляющей преобразователя токнапряжение должен быть равен нулю. Известны схемы преобразователей токнапряжение, лишенные отмеченных недостатков, т. е. обладающие нулевым входным напряжением и конечной синфазной составляющей [6], [7]. Данные схемы преобразователей представлены соответственно на рис. 1, а и б.

Рис. 1. Преобразователи ток-напряжение с нулевым входным напряжением: $a - [6]; \delta - [7]$

Выходное напряжение схем, пропорциональное входному току, находится в виде $U_1 - U_2 = \Delta U$. В работах показано, что $\Delta U = 2I_{\rm BX}R_0$ при соотношениях резисторов, показанных на схемах. При этом втекающий ток равен вытекающему, а падение на-

пряжения на входе преобразователя не превышает суммы напряжений смещения ОУ1 и ОУ2. Однако в упомянутых работах [6], [7] отсутствует вывод расчетных соотношений и не приведен анализ влияния погрешностей ОУ1 и ОУ2 на результат преобразования.

Целью работы является проведение анализа работы отмеченных схем с учетом несовершенств используемых элементов: напряжения смещения и входных токов операционных усилителей.

Постановка задачи

Анализ работы проведем для обобщенной схемы, представленной на рис. 2. Она отличается от схем, представленных на рис. 1, наличием входных напряжений $U_{\rm вх1}$, $U_{\rm вх2}$ и входных резисторов $R_{\rm 1}$ и $R_{\rm 2}$. Будем полагать, что ОУ1 и ОУ2 идеальные.

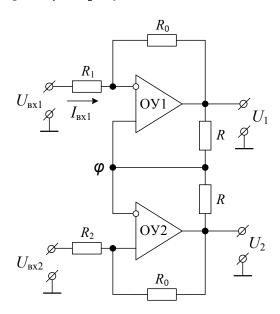


Рис. 2. Обобщенная схема преобразователя [6]

Для данной схемы можно записать следующие соотношения:

$$\phi = \frac{U_1 + U_2}{2};$$

$$U_{\text{BX}1} \frac{R_0}{R_1 + R_0} + U_1 \frac{R_1}{R_1 + R_0} = \phi;$$

$$U_{\text{BX}2} \frac{R_0}{R_2 + R_0} + U_2 \frac{R_2}{R_2 + R_0} = \phi.$$

Решая полученную систему относительно $U_1,\ U_2$ и $\phi,\$ получаем:

$$U_{1} = -U_{\text{BX}1} \frac{R_{0} - R_{2}}{R_{1} + R_{2}} + U_{\text{BX}2} \frac{R_{0} + R_{1}}{R_{1} + R_{2}};$$

$$U_{2} = U_{\text{BX}1} \frac{R_{0} + R_{2}}{R_{1} + R_{2}} - U_{\text{BX}2} \frac{R_{0} - R_{1}}{R_{1} + R_{2}};$$

$$\varphi = U_{\text{BX}1} \frac{R_{2}}{R_{1} + R_{2}} + U_{\text{BX}2} \frac{R_{1}}{R_{1} + R_{2}}.$$

$$(1)$$

Выходное напряжение ΔU равно

$$\Delta U = U_1 - U_2 = -\left(U_{\text{BX}1} - U_{\text{BX}2}\right) \frac{2R_0}{R_1 + R_2}.$$
 (2)

Из последнего выражения видно, что обобщенная схема является дифференциальным усилителем. Проделывая аналогичный анализ для схемы [7], можно получить выражение для ΔU , отличающееся от (1) только знаком.

Из полученных соотношений (1) можно получить уравнение преобразователя ток-напряжение. Для этого положим, что $U_{\rm вx2}=0$, и выразим ток, протекающий через резистор $R_{\rm l}$, который и будем считать входным (рис. 3).

$$I_{\text{BX}1} = \frac{U_{\text{BX}1} - \phi}{R_{\text{I}}} = \frac{1}{R_{\text{I}}} \left(U_{\text{BX}1} - U_{\text{BX}1} \frac{R_{\text{2}}}{R_{\text{I}} + R_{\text{2}}} \right) = \frac{U_{\text{BX}1}}{R_{\text{I}} + R_{\text{2}}}.$$

Тогда, используя (1) и (2), можно записать:

$$U_{1} = -I_{\text{BX}1}(R_{0} - R_{2});$$

$$U_{2} = I_{\text{BX}1}(_{0} + R_{2});$$

$$\varphi = I_{\text{BX}1}R_{2};$$

$$\Delta U = -I_{\text{BX}1} \cdot 2R_{0}.$$
 (*)

Откуда очевидно, что ток, протекающий по резистору R_2 , в точности будет равен входному току $I_{R_2}=\frac{\phi}{R_2}=I_{\text{вх1}}.$ То есть в идеальном случае падение напряжения на преобразователе будет равно нулю, а уровень синфазной составляющей $\phi=I_{\text{вх1}}R_2.$ Результат преобразования не зависит от сопротивления резистора R_2 , т. е. от уровня синфазной составляющей.

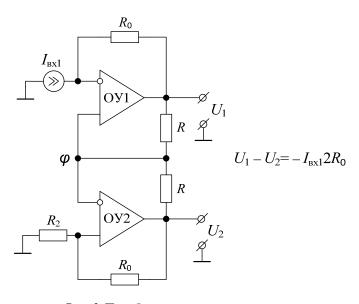


Рис. 3. Преобразователь ток-напряжение

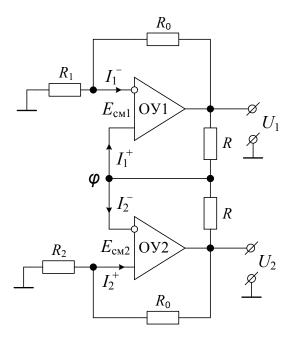
Анализ влияния погрешностей ОУ1, ОУ2 на результат преобразования, проявляющихся в виде напряжений смещения и входных токов, ввиду нелинейности схе-

мы проведем методом наложения. Анализ проведем для обобщенной схемы, представленной на рис. 4, на которой введены обозначения $E_{\rm cm1}$, $E_{\rm cm2}$ — напряжения смещения, I_1^- , I_1^+ и I_2^- , I_2^+ — входные токи соответственно для ОУ1 и ОУ2.

Пусть в схеме действуют только напряжения смещения $E_{\rm cm1}$, $E_{\rm cm2}$. Тогда для этого случая можно записать следующие соотношения:

$$\phi + E_{\text{cm1}} - U_1 \frac{R_1}{R_0 + R_1} = 0;$$

$$\phi - E_{\text{cm2}} - U_2 \frac{R_2}{R_0 + R_2} = 0;$$


$$\phi = 0.5(U_1 + U_2).$$

Разрешая данную систему уравнений относительно $U_1,\ U_2,\ \phi,$ можно получить:

$$U_{1} = \left(E_{\text{cM1}} \frac{R_{0} - R_{2}}{R_{0}} + E_{\text{cM2}} \frac{R_{0} + R_{2}}{R_{0}}\right) \frac{R_{0} + R_{1}}{R_{1} + R_{2}};$$

$$U_{1} = \left(E_{\text{cM1}} \frac{R_{0} + R_{1}}{R_{0}} + E_{\text{cM2}} \frac{R_{0} - R_{1}}{R_{0}}\right) \frac{R_{0} + R_{2}}{R_{1} + R_{2}};$$

$$\Delta U = 2E_{\text{cM1}} \frac{R_{0} + R_{1}}{R_{1} + R_{2}} + 2E_{\text{cM2}} \frac{R_{0} + R_{2}}{R_{1} + R_{2}}.$$
(3)

Puc. 4. Схема для анализа влияния погрешностей ОУ1, ОУ2 на результат преобразования

Положим, что $E_{\rm cm1}=E_{\rm cm2}=0$, $I_2^+=I_2^-=0$, а действуют только входные токи ОУ1. Для этого случая можно записать:

$$I_{1}^{-}\frac{R_{1}R_{0}}{R_{0}+R_{1}}-U_{1}\frac{R_{1}}{R_{0}+R_{1}}+\varphi=0;$$

$$I_{1}^{+}=\frac{U_{1}-\varphi}{R}-\frac{\varphi-U_{2}}{R};$$

$$\varphi=U_{2}\frac{R_{2}}{R_{0}+R_{2}}.$$

Разрешая полученную систему, можно получить:

$$U_{1} = I_{1}^{+} R \frac{R_{2}}{R_{0}} \frac{R_{0} + R_{1}}{R_{1} + R_{2}} + I_{1}^{-} R_{1} \frac{R_{0} + R_{1}}{R_{1} + R_{2}};$$

$$U_{2} = I_{1}^{+} R \frac{R_{1}}{R_{0}} \frac{R_{0} + R_{2}}{R_{1} + R_{2}} - I_{1}^{-} R_{1} \frac{R_{0} + R_{2}}{R_{1} + R_{2}};$$

$$\Delta U = I_{1}^{+} R \frac{R_{2} - R_{1}}{R_{1} + R_{2}} + 2I_{1}^{-} R_{0} \frac{R_{1}}{R_{1} + R_{2}}.$$

$$(4)$$

Теперь положим, что $E_{\rm cm1}=E_{\rm cm2}=I_1^+=I_1^-=0$, т. е. действуют только входные токи ОУ2. Для этого случая можно записать:

$$I_{2}^{+} \frac{R_{2}R_{0}}{R_{0} + R_{2}} - U_{2} \frac{R_{2}}{R_{0} + R_{2}} + \varphi = 0;$$

$$I_{2}^{-} = \frac{U_{1} - \varphi}{R} - \frac{\varphi - U_{2}}{R};$$

$$\varphi = U_{1} \frac{R_{1}}{R_{0} + R_{1}}.$$

Исходя из полученной системы, $U_{\rm 1},\ U_{\rm 2}$ и ΔU можно записать:

$$U_{1} = I_{2}^{-} R \frac{R_{2}}{R_{0}} \frac{R_{0} + R_{1}}{R_{1} + R_{2}} - I_{2}^{+} R_{2} \frac{R_{0} + R_{1}}{R_{1} + R_{2}};$$

$$U_{2} = I_{2}^{+} R_{2} \frac{R_{0} - R_{1}}{R_{1} + R_{2}} + I_{2}^{-} R \frac{R_{1}}{R_{0}} \frac{R_{0} + R_{2}}{R_{1} + R_{2}};$$

$$\Delta U = I_{2}^{-} R \frac{R_{2} - R_{1}}{R_{1} + R_{2}} - 2I_{2}^{+} R_{0} \frac{R_{2}}{R_{1} + R_{2}}.$$
(5)

С учетом (3)–(5) суммарную погрешность от действия напряжений смещения и входных токов ОУ1 и ОУ2 можно записать в следующем виде:

$$\Delta U = 2E_{\text{cM1}} \frac{R_0 + R_1}{R_1 + R_2} + 2E_{\text{cM2}} \frac{R_0 + R_2}{R_1 + R_2} + \left(I_1^+ + I_2^-\right) R \frac{R_2 - R_1}{R_1 + R_2} + 2\left(I_1^- R_1 - I_2^+\right) \frac{R_0}{R_1 - R_2}.$$
 (6)

Для преобразователя ток-напряжение следует положить, что $R_1 = \infty$, тогда выражение (6) можно записать в следующем виде:

$$\Delta U = 2E_{\text{cyl}} + 2I_1^- R_0 - I_1^+ R - I_2^- R. \tag{7}$$

С учетом (7) и (*) приведенную погрешность преобразования δ можно записать в виде:

$$\delta = \frac{2E_{\text{cm1}} + 2I_{1}^{-}R_{0} - I_{1}^{+}R - I_{2}^{-}R}{2I_{\text{rx}}R_{0}}$$

или

$$\delta = \frac{E_{\text{cm1}}}{I_{\text{BY}}R_0} + \frac{I_1^-}{I_{\text{BY}}} - \frac{\left(I_1^+ + I_2^-\right)}{I_{\text{BY}}} \frac{R}{2R_0}.$$

Погрешность состоит из трех слагаемых. Первое слагаемое определяется напряжением смещения ОУ1 и диапазоном выходного напряжения преобразователя, т. е. при заданном входном токе значением сопротивления R_0 . Данное слагаемое, при наличии балансировки $E_{\rm cm1}$ в ОУ1, может быть скомпенсировано. Второе слагаемое определяется отношением входного тока ОУ1 к преобразуемому току $I_{\rm вx}$. Данное слагаемое в погрешности является лимитирующим. Третье слагаемое, аналогично второму, но зависит от отношения резисторов $\frac{R}{2R_0}$, которое при выборе резистора R необходимо делать

как можно меньше. При измерении малых токов это реализовано достаточно просто. Следует обратить особое внимание на то, что в выражение погрешности не входит напряжение смещения ОУ2. В связи с этим ОУ2 целесообразно выбирать с полевыми транзисторами во входном каскаде, т. е. обладающим заметным $E_{\rm cm}$ и очень низкими входными токами. Таким образом, с учетом балансировки ОУ1 и при правильном выборе сопротивления резистора R и ОУ2 погрешность преобразователя ток-напряжение можно оценить следующим образом:

$$\delta \cong \frac{I_1^-}{I_{_{\mathrm{BX}}}}.$$

Заключение

В работе получены аналитические соотношения, описывающие работу обобщенной схемы преобразователя.

На основе данных соотношений получено выражение погрешности схемы от влияния напряжения смещения и входных токов операционных усилителей.

Представлено выражение погрешности преобразования для преобразователя токнапряжение.

Показано, что основная часть погрешности определяется соотношением входного тока ОУ1 к преобразуемому току, в то время как напряжение смещения ОУ2 не влияет на результат преобразования.

Литература

- 1. Левшина, Е. С. Электрические измерения физических величин: (измерительные преобразователи): учеб. пособие для вузов / Е. С. Левшина, П. В. Новицкий. Л.: Энергоатомиздат, Ленингр. отд-ние, 1983. 380 с.: ил.
- 2. Данилов, А. Современные промышленные датчики тока / А. Данилов // Соврем. электроника. 2004. № 10. С. 24–35.

- 3. Дарен, Уэнн. Резистивные методы измерения тока для точного контроля в электронных схемах / Уэнн Дарен // Компоненты и технологии. 2011. № 7. С. 156—159.
- 4. Достал, И. Операционные усилители : пер. с англ. / И. Достал. М. : Мир, 1982. 512 с. : ил.
- 5. Гусев, В. Г. Методы построения точных электронных устройств : учеб. пособие / В. Г. Гусев, Т. В. Мирина ; науч. ред. В. С. Фетисов. 3-е изд., стер. М. : Φ ЛИНТА, 2012. 268 с.
- 6. Mugioin, F. W.Circuit allows multiple I/U converters / F. W. Mugioin // EDN. 1983. Vol. 28, № 20. P. 201–202.
- 7. Kokot, Maciej. Компенсация падения напряжения на измерительном сопротивлении при измерении малых токов / Maciej Kokot. Режим доступа: http://www.rlocman.ru/shem/schematics.htm. Дата доступа: 20.01.2015.

Получено 20.05.2015 г.